
Preventing Service 
Sprawl
Vladislav Vilensky
Enterprise Architect
03/07/2019



2

Are we ready for 1K of business services?

Pick any business noun, let’s say Claim:

• Some clients want very little info – just claim status

• Some clients want the whole set of 100’s of attributes and those of related 
objects – claim details with details about all associated providers

• Yet others want some arbitrary mix of Claim attributes for some obscure 
purpose

• Some cant move forward until service has responded – synchronous clients

• Other clients want to be notified when requested info is available without 
waiting for response – asynchronous clients

• And yet other clients don’t want to process messages with claim details, 
they want files with information delivered to them

The number of Entity Type, data granularity and access mechanism 
combinations and permutations is staggering!



3

Can we limit ourselves to a set of SCRUD services per 

entity type?

(1 search + 1 get + 1 update + 1 delete service per Entity type)

X number of access mechanisms

X number of Entity types

-----------------------------------

Fairly high number of services, but better than the “unlimited sprawl” 
alternative

Why not do this?

• A Get <insert Entity type here> service would return the entire Entity to 
every caller. This wastes resources and diminishes performance.

• We can do better and hopefully without making architecture overly complex



4

Can we limit ourselves to only 7 canonical services?

1. Synchronous Message-based Entity Get

2. Asynchronous Message-based Entity Get

3. Asynchronous File-based Entity Get

4. Synchronous Message-based Entity Update

5. Asynchronous Message-based Entity Update

6. Synchronous Message-based Entity Delete

7. Asynchronous Message-based Entity Delete



5

The 7 in words

• Services will receive request information as a single string parameter 
with string contents encoded either as XML or as JSON

• Responses will be rendered as a single string encoded the same way 
as the corresponding request. In other words, XML request results in 
XML response, JSON request results in JSON response

• Service endpoints will be accessible through HTTP with a single 
request parameter (see previous bullet point)

• All requested information will always be contained in the request 
string. We will not be submitting requests with information 
contained in a file placed in some predetermined location.

• We will support synchronous and asynchronous invocation of 
services that exchange messages, and asynchronous invocation of 
services that produce files with service output to be picked up by the 
service consumer whenever ready



6

The 7 in UML



7

Message Class hierarchy



8

The 7 in action
Synchronous entity get

• Satisfies 2 purposes: Entity Search and Entity Get

• The service will accept entity get request parameter consisting of selection criteria. Current design shows an array of name-value pairs. This model may 
be overly simplistic and would require an upgrade to more of a criteria object that can combine complex selection clauses joined by logical expressions 
AND, OR and matching logic like BEGINS WITH etc.

• The second portion of the request is an array of XPath expressions encoded as strings that specify schema elements of the requested entity that needs 
to be brought back

• The service would be invoked synchronously and the client would be blocked until an instance of Entity Get Response is returned

Asynchronous entity get

• The asynchronous version of entity get service will return immediately an instance of asynchronous response object that provides information to the 
caller about acceptance (or rejection) of the request. Asynchronous request is derived from the synchronous request with addition of call-back URL, 
which the service implementation is going to call once the results have been obtained and properly encoded.

Asynchronous file-based entity get

• The file-based version of the entity get service is invoked asynchronously, and rather than eventually calling the client with a message containing the 
requested entity instances, it generates a file containing requested instances and simply informs the caller about availability of the file

Synchronous entity delete

• We made a decision that we will not allow for bulk deletes of entities, and each delete request must be based on a unique identifier for the entity that is 
to be deleted. The caller is blocked until a delete response message is sent back.

Asynchronous entity delete

• Asynchronous version of delete releases the client immediately and calls back with delete completion on the specified call-back URL

Synchronous entity update

• Like deletes, updates are geared at one entity at a time. The request message must contain the entity that is being updated. A service implementation 
will examine which attributes are present in the supplied entity object, thus no need for additional XPath attributes explaining what information is 
present in the request. We need to investigate further whether we want to support the granularity of update of PATCH, equivalent to a database update 
statement, or PUT, equivalent of delete if exists plus insert database statements.

Asynchronous entity update

• Asynchronous entity update works in the same fashion as all other asynchronous versions



9

Much more work to do

• What complexities do we bring to the world of authorization by not having different 
service URLs for which permissions can be created, but having to analyze request 
contents to decide whether given user has the right to perform the operation on the 
requested entity type. Because we only have 1 function for each of the SCRUD 
operations, how do we find out if the user is entitled to search for claims vs. search 
for members. The obvious answer is it’s driven by business rules – if so, what kind of 
implementation would this lead to?

• Performance implications of additional context analysis. Do we have enough 
compute to support our projected usage volumes?

• Of the 7 services we specified, not all are equally important. An opinion has been 
expressed that file-based get is of the lowest priority because it’s a mechanism that’s 
discouraged in our architecture. What is the roadmap of priorities?

• Should we support file-based requests? For e.g. a mass claim update coming in from 
the FS vendor in a file may be fed to a service as a parameter. Under the current 
architecture, we probably would have a file ingestion service (not part of the entity-
centric services) that would process contents of such a file and call the entity-centric 
service for each record. Is that acceptable?



Thank You!


